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Divacancy in silicon: Hyperfine interactions from electron-nuclear
double-resonance measurements. II
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The Si-G7 EPR spectrum, which is attributed to the negative charge state of the divacancy in silicon, was
investigated by electron-nuclear double resonance. HyperÍine interactions between the unpaired defect
electron and various 2eSi nuclei were determined to obtain detailed information about the electron wave
function. A total number of 33 hyperfine tensorc was determined, of which 20 belong to a general class shell
of atoms and 13 to a mirrorplane class shell. In this way the divacancy electron was probed in a region
containing more than 100 lattice sites around the defect. Most hyperfine tensors exhibited approximate axial
symmetry, a majority of these having their axial direction along a (lll) crystal bond direction. An
analysis of the interactions is given, using a wave function that is a lincar combination of atomic orbitals.
From a further theoretical approach of the defect wave function, using extended Hiickel theory, preliminary
results are given. In their discussion data from the positive divacancy are also included. In agreement
with previous conclusions, the largest general class and mirrorplane class interactions were identificd with the
nearest-neighbor shells of both types. Further matching between hyperfine tensors and specific shells of
lattice sit€s could not yet be madc.

I. INTRODUCTION

This paper is the second in a series presenting
results from electron-nuclea"r double resonanee
(EI{DOR) experiments on the divacancy in silicon.
The first paperl in this text further denoted by I
wa,s concerned vÍith the positive charge state,
this paper with the negative charge state of the
divacancy. For some introductory remtlrks and
general considerations about the divacancy we refer
to I.

From all defects which can be produced in sili-
con by iruadiation with energetic particles, the
divacancy (VrI is one of the best known. Con-
trary to simpler defects like the monovacancy or
the self-interstitial, the divacancy is stable at
room temperafure. Divacancies calr easily be pro-
duced by electron irradiation of silicon at room
temperature. The divacancy is one of the first
defects in silicon for which electron paramagnetic
resonance (EPR) spectra could be identified with
a high degree of reliability.2-6 The spectra labeled
Si-G6 and Si-G? were derived to originate from
the singly positive and the singly negative charge
state of the divacancy, both of which constitute a
S =à paramagnetic center due to a single unpaired
electron spin. Which charge state, ranging from
singly positive to doubly negative, the divacancy
assumes primarily depends on the position of the
Fermi level. Several sfudies of the divacancy
using EPR have been reported.z-e Also data from
infrared absorption studiesro'rl and photoconductiv-
ity experimentslz are known. Additional informa-
tion about the energy levels a^ssociated with the
different charge states of the divacancy originates

from optica1l3,14 and capacitance transient spec-
troscopytu-l? studies. Both in I and in this paper
we rely heavily upon the detailed information ob-
tained by Watkins and Corbett. s

An important feature of many defects in silicon
are the hyperfine interactions between the un-
paired defect electron and neighboring magnetic
znsi nuclei. For the negative divacancy V; the
three largest hyperfine interactions can be ob-
served with EPR. TWo of them have been reported
before,s only the largest interaction, which u/ill
be labeled M1 in this paper, is \ryell resolved.
Weaker interactions cannot be observed with EPR.
They are the origin of the inhomogeneous line
broadening in the EPR spectrum. Using electron-
nuclear double resonance a large part of these
interactions can easily be resolved, however.

The importance of hyperfine interactions is due
to the fact that they directly reflect the distribu-
tion of the u/ave function of the unpaired resonance
electron. A hyperfine interaction can be expressed
a"s a tensor vrhose isotropic part is the Fermi
contact interaction which is proportional to the
probability density of the electron on the relevant
.nuclear site. The anisotropic part is due to di-
pole-dipole interaction between the electronic and
nuclear magnetic moments.

An ENDOR study of the shallorv donors P, As,
and Sb in silicon has produced an abundant number
of hyperfine interactions.rE're That study formed
a severe test for the effective-mass treatmenFo-zz
and the onset for an extension of this theoretical
method in which good agreement between theoreti-
cal wave functions and observed hyperfine cor-
stants could be achieved.z3,24 For deep levels,
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tike most defects in silicon, Do such promising
theory vÍas available, except perhaps extended
Hiickel theory (EHT).25.26 ENDOR results for the
positive divacancy Vl presented in I, could not be

compared with an EHT calculation by Lee and

McGill.2? Since then calculations especially in-
tended for a description of experimental hyperfine
interactions have been performed.zs-3o From these

calculations f or Vi a rather satisfactory descrip-
tion of the defect \ryave function could only be given
for the six nea.rest neighbors of the defect. For
the remaining hyperfine interactions with more
than 50 other neighbors a matching with a theo-
retical wave function turned out to be still impos-
sible. For the present study on V; results of a
similar calculation ELre given.

il. EXPERIMENT

Experiments were performed on floating zone
(FZ) single crystalline silicon specified to be dis-
location free. T\Mo kinds of phosphorus-doped z-
type samples have been used which had preirradia-
tion room-temperature resistivities of 0.34 and
0.03 O cm. Sample preparation and imadiation
were as described in I. Samples were cut and
ground to a roughly cylindrical shape with a length
of 20 mm and a diameter of.2 ffiffi, having a (f fO)

crystal direction parallel to the long edges. Ir-
radiation with 1.5-MeV electrons took place at
temperatures not above 60 "C. Optimum divacancy
resonance signals were observed after an electron
fluence of about 1.5x 1018 electrons/cmz for both
kinds of samples.

In addition to the EPR spectrum G7 of the nega-
tive divacaney, in both kinds of samples different
series of EPR spectra from other defects have
been observs6.3r É2 In the originally high-resis-
tivity samples spectrum G7 could not be observed
without simultaneous perceptibility of spectrum
G16. In the low-resistivity samples spectrum
G? always appeared together with spectrum NL7.31

The magnetic resonance experiments were car-
ried out in a superheterodyne spectrometer oper-
ating at 23 GHz.33 '34 Experiments were performed
for the greater part as described in I. Samples
were mounted with their a:ris along the ar<is of a
cylindrical TEo' cavity. The ENDOR coil con-
sisted of two vertical oblong rectangular loops
of fine copper wire fixed to a Teflon cylinder
which could be shifted over the sample. During
ENDOR measurements the sample temperafure
was kept at about 10 K. At this temperature the
spin-lattice rela:ration time T, of. the divacancy
is in the 0.01 -0.1s region.35 For our conditions
the EPR signal is saturated at that temperature.
For double phase-sensitive deteetion the mag-
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netic f ield was modulated sinusoidally at a f re -
quency of L27 Hz, while the square-wave modula-
tion of the rf field had a frequency of about 1.4
Hz. The ENDOR spectra of the smaller hyper-
fine interactions were recorded with the magnetic
field adjusted to the center of an EPR line. For
the larger interactions the magnetic field setting
was changed, approximately to the expected or
observed position of the corresponding hyperfine
satellite of the EPR transition.

On samples of both kinds described above, hy-
perfine interactions have been observed with
ENDOR. For the lower-frequency interactions
no differences could be observed although the
low-resistivity samples showed greater EPR in-
tensities. For the larger interactions the results
on the low-resistivity samples got even worse by
severe line broadening. Therefore the higher-fre-
quency interactions have all been determined on
the high-resistivity material.

ilI. DESCRIPTION AND ANALYSIS OF ENDOR
SPECTRA

A. Spin Hamiltonian

EPR and EI{DOR spectra of a paramagnetic de-
fect in silicon in which no impurity atoms are in-
volved can generally be described by the spin
Hamiltonian

'JC - Éa H' - g nttnÊ' ï, ) (1)

with an electronic Zeeman interaction term, a
hyperfine interaction term, ild a nuclea.r Zeemarr
interaction term in which the parameter i enum-
erates the lattice sites around the defect. For
each lattice site there is a 4.7/s probability to be
occupied by a "Si isotope with a nuclear spin I =È

and a nucleax g value gr= -1.1095.
The EPR spectrum G7 of the negative divacancy

can be described with an electron spin S =à and an
anisotropic electronic Zeeman interaction. The
components of the electronic g tensor are found
to be

9", =2.0L16 5 t Q.0001 ,

g vv = g 
"" 

= 2 ' 0089 5 ,

*tv =9r".= -0'0042 ,

9", = -0.004 45 ,

for a divacancy in the orientation la"beled ad and
the coordinate system as given in Fig. 1. These
values agree with those reported by Watkins and

Corbett. s

In the limit of high magnetic field a solution of
the eigenvalue problem of the spin Hamiltonian
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FIG. 1. Model of the divacancy in the orientatíonad.
The empty lattice sites are a and a'.

Eq. (1) can easily be found. In that case ENDOR
transition frequencies submitted to the selection
rules Lffir=0r 6mrt =1, O*rrrr.=Q are given by

hrï=lgxprHtàk' Án'itl , Q)

where i ,s a unit vector in the direction of the
external magnetic field Ê. In this way the reson-
ances from different neighboring nuclei give rise
to a spectrum which is symmetric with respect
to the nuclear Zeeman frequency hv =g rtt nH. An
illustration is given in Fig. 2. Another striking
feature of this spectrum is the large signal direct-
ly around the nuclear Zeeman frequency, which
originates from nuclear transitions of large num-
bers of neighbors with very weak unresolved in-
teractions. In the low-resistivity samples with a
high phosphorus content (about 1 upon 70 000) an
additional resonance \ryas observed around the
nuclear Zeeman frequency of the 31P nueleus
(gl" =2.261). This is an indication that there are
still hyperfine interactions with very distant
neighbors.

The high-field solution Eq . (2) breaks down if
the anisotropic part of the hyperfine tenso" Ào

is no longer small as compared to the transition
frequency hur, as for most larger interactions.
For such cases a corrected formula

(nv*), = (g *p *H * fr . Á,i.h),

++[ (k. Á,t)xhf.tn. Àd )xk] (3)

can be derived.
For an analysis of hyperfine interactions it is

appropriate to separate the tensors À, into a
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scalar paxt a, and a traceless tensor Ë,

4 = ari *Êo

with aí =| frÀ, and TrB, = 0. The isotropic part
at originates from the Fermi contact interaction

&t= fus$"grtt.J./G,)lt (5)

giving a relation with the probabiliLy density of
the defect electron on the nuclear site i,. The
anisotropic part of the interaction arises from
the dipole-dipole coupling between the electronic
and nuclear magnetic moments

(B)* =g PBg,vÉ,v(,PBr t r u /ru - 6,o/rtltl'),

jrk=xr!rz

B. Symmetry considerations

In Fig. 1 the r rg,z crystal coordinate system is
given which is used in this paper. The divacancy
orientation depicted, with vacant lattice sites on
a' and a and dangling or extended bonds on d and
d' ís denoted by ad, aeeording to Watkins and Cor-
bett.u In our analysis the orientation ad is chosen
as the basic orientation for which the hyperfine
interaction tensors are given. A group-theoreti-
cal treatment of the divacancy with its shells of
neighboring lattice sites has been given in I. In
an undistorted lattice a divacancy will have 3m
(Du) point-group symmetry. As a result of Jahn-
Teller instability a lattice distortion gives the
lower (2/m)(Cru) symmetry. The presence of a
neighboring 'nsi nucleus further lowers the sym-
metry. If the nucleus is present on the mirror
plane of the divacancy the point-group symmetry
is reduced to m(Cru). T\ryo such lattice sites about
a divacancy of a given orientation which are equi-
valent by symmetry are said to form a shell. All
shells of this type constitute the mirror-plane
class. The atom sites d and d' in Fig. 1 are an
example of a miruor-plane calss shell. A zesi

nucleus which is not situated in the mirror plane
of the divacancy lowers the symmetry to point
group 1 (Cr). These lattice sites divide in shells
which are called general class shells. Each shell
contains four lattice sites equivalent by symmetry.
Each lattice site about a divacancy belongs to a
shell of one of these two classes. In magnetic
resonance practice of silicon the external mag-
netic field is generally rotated in a tttOl plane of
a crystal. In that way the different divacancy or-
ientations which are present, combined with the
possible positions of a 'nsi nucleus in a shell, give
rise to characteristic angular-dependent patterns.
Mirror-plane class hyperfine interactions exhibit
patterns of monoclinic I symmetry, general class
interaetions of triclinic symmetry.tn In Figs. 3

(4)

(6)
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FIG. 2. Central part of an ENDOR spectrum for the dÍvancancy
spectrum shows s.ymmetry around the central frequency v = 6.818
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and 4 such patterns are sho\ryn. For magnetic
fietd directions in the (100), (110, and (011) di-
rections characteristic degeneracies occur. The
values of the hyperfine interactions in these di-
rections are labeled S, , Tt, ild Ur, respectively.

C. Determination of hyperfine tensors

To produce the angular-dependent patterns in-
dicated above, the hyperfine interaction has to be

determined for a variety of magnetic field di-
rections in the (01T) plane and for all different
divacancy orientations. On the other hand a gen-
eral class tensor is determined by only six in-
dependent tensor elements and a mirror-plane

class tensor by only four. Therefore a determina-
tion of the S, T, and [/ values from each tensor
is far suffieient to determine the tensors. The
symmetry Wpe of a tensor follows directly from
the number of S , T and U values. Sinee in each
of the S, T , and U values transitions coincide
which are related to different defect orienta-
tions, these resonances can be determined with
a better signal-to-noise ratio than those for an

arbitrary direction of the magnetic field. The ten-
sor elements can be derived with a least-squares
fit to these observed values. Examples of the pat-
terns, calculated from tensors which have been

derived in this way are given in Figs. 3 and 4 for
a mirror-plane class and a general class inter-
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action, respectively. fn the frequency range where
most of the hyperfine interactions were found,
the angular-dependent patterns showed such a
severe overlap that in most cases it was absolutely
impossible to decide which S, T, and [/ values
would belong to the same shell. For this reason
spectra were recorded for magnetic field directions
at 5o intervals and with the field set upon the EPR
transitions which correspond to each of the orien-
tations adrda, and bc rcb. In regions of crossing
lines even 2" ot 1" intervals have been taken. On
the other hand some angles of the magnetic field
had to be omitted due to overlap of the EPR reson-
ances with those of other orientations or those
of other defeet spectra. An angular plot of the ob-
served hyperfine frequencies is given in Fig. 5

for a large part of the considered frequency range.
For a mirror-plane class tensor the tensor ele-
ments can be derived from the observed S, T, and
[/ values of the four divacancy orientations as given

E. G. SIBVERTS, S. H. MULLER, AND C. A. J.AMMERLAAN rB.
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FIG. 3. Angular dependence of the mirror-plane class hyperfine interaction M5. Least-squares fit to the observed
S, ?, and U values which are given as black dots. This interaction has nearly (111) axiat symmetry.

in Fig. 5. The other S and [/ values may be cal-
culated and afterwards experimentally verified.
Predicted values turned out to be accurate to with-
in a few kHz. A general class tensor cannot yet
be determined unambiguously in this \ryay. From
the calculated sum S, +S, of the S values from
other divacancy orientations and a list of experi-
mentally determined values S, and S' in all cases
a decisive choice could be made, however. The
other values could again be calculated and after-
wards experimentally veriÍied. Tensor eomponents
derived by a least squares fit of fr. À . k tothe ob-
served S, T, and U values served as starting pa-
rameters for a numerical diagonaLízation of the
complete spin Hamiltonian Eq. (1). Iterative cal-
culations produced a final least-squares fit of the
tensor components.

The general class tensors have been labeled
Gi, the mirror-plane class tensors Mi, enumerat-
ing them after decreasing isotropic part as in I.
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FIG. 4. Angular dependence of the nearly (111) axially symmetric general class tensor G8'
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A total of 20 general class tensors has been de-
termined. From the 13 mirror-plane class tensors
one (ML) tras been observed only with EPR. In
Table I the hyperfine parameters of these 33 in-
teractions are given. The tensor components
specified in the crystal coordinate system are
given for divacancy orientatíon ad, For a mirror-
plane class shell the interactions with both lattice
sites of the shell are given by this tensor. For
the four lattice sites of a general class shell there
are two tensors which transform into each other
by interchange of the y and z indices. From ex-
periment it is not possib,le to determine to which
two lattice sites the given tensors correspond.
The three principal values of the tensors are
called A' A* andÁ, in order of descending mag-
nitudes. The directions of their principal a>(es

are specified by the angles y, and 0, , where yo

is the angle between the ith eigenvector and the
(011) mirror plane of the divacancy and 0, is the
angle from the [100] direction to the projection
in the (OTt) plane. For a mirror-plane class ten-
sor one principal anis always points into ttre [0Tt]
direction. The reported hyperfine interactions
cover 106 lattice sites around the divacancy. Hy-

2

perfine interactions with at least 10 additional
shells were observed, resolved from the central
part of the EI{DOR speetrum around the nuclear
Zeeman frequency. The overlap of the angular-
dependent patterns of these weaker interactions was
too strong to determine their hyperfine tensors.
The tensor components for the smallest interac-
tions could be determined to t 1 kHz, typical line-
widths \ryere 3-5 kHz. For larger interactions
both error limit and linewidth increased. For
GL, G2, and M2 tensor components are accurate
to t20 kHz; linewidths became even 100 kHz. EPR
results of. ML are accurate to within 0.5 MHz and

agree with results reported before.s

ry. DISCUSSION

A. Analysis in atomic orbitals

For the analysis of hyperfine interactions it has
turned out to be appropriate to describe a defect
wave function as a molecular orbital which is
constructed by linear combination of atomic or-
bitals.s'36'3? hr this case a linear combination of
silicon 3s and 3p atomic orbitals centered on the
lattice sites around the divacancy can be chosen:
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FIG. 5. Angular-dependent plot of the observed hyperfine
bc rcb. The frequency ranges from 0.5 to 2.8 MHz above the
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TABLE I. Hyperfine parameters of the negative divacancy (values in MHzrft,61, /2 in degrees).

684r

Tensor A* An, A"" Arn Ar" A"" Ar Tzó1TtAsA2

GT
G2
G3
G4
G5
G6
G7
G8
G9
G10
G11
GL2
G 1,3

GL4
G15
G16
GL7
G18
G19
G20

ML
M2
M3
M4
M5
rw6

Iufl
M8
M9
MLO
MLL
ML2
Mt3

31.59 32.26
20. L3 19.8 5

4.480 3.888
3.704 3.2LL
3.44L L.ilg
2.876 2.8 58

2.660 2.499
2.0L6 1.882
2.668 1. L73
1.616 r.477
L.252 1. L66

1.188 L.L20
0.784 0.692
0.724 0.722
0 .124 0.667
0 .572 0.606
0.420 0.448
0 .420 0.388
0.388 0 .428
0. 319 0 .287

L97.4 =A 
""LL.2L

5. L5L
3.270
2.038
1.978
1.681
1.6 93

1.430
L.495
0.923
0.720
0.396

30 .56 2.2L
19.8 5 3. l-6

4.LLL -0.258
3 .62L -0.688
3 .838 -0.93 1

z .7 LL 0 .506
2.243 0.595
1.909 0.287
1.509 0 .464
1.395 -0.1-10
L.25L -0.191
L.2L7 -0.l-56
0 .772 0.130
0.722 -0.024
0 .720 0.0Í)4
0 .562 -0.1-0 5
0.408 -0.056
0 .427 0.076
0.40 5 -0.043
0.284 -0.064

LWL.L =A 
",LL.49

5.440
4.988
1.98I
L.770
L.847
L.704
L.602
1.530
L.118
0.691_

0 .551

-2.28
3.10
0.243

-0.652
- 1.099

0.446

-0.399
-0.229
-0.400
-0.1-37
-0.L92
-0.170
-0.017
-0.011

0.093
0. 1"0 5

- 0.049
0.0 76

0.050

- 0.04 5

22.3 23.'.1 24L.7
2.07 1.93 15.36
0.768 -0.693 6.7V1
1.486 -0.676 6.738
0.413 0.430 2.8 55
0 .062 -0.108 2.074

- 0.160 - 0. 136 2.007
0 .333 0.326 2.3 58

0.317 0.2il 2.L09
0.209 -0 .205 L.932

-0.102 -0.039 L.2t9
0.089 0.1_01 0.895

-0.060 0.057 0.611

-2 .09 35.93
3.24 26.28

-0 .437 4.8 9L

0.8 04 4 .97 6

1.84 5 5 .964
0 .447 3 .7 55

-0.478 3.490

-0.29/1 2.485

- 0.832 3.272

-0.065 L.677
0.213 L.624
0.203 1.53 5

0.051 0.885

-0.003 0.748
0.1L6 0.910

-0.084 0 .778
0.039 0.525
0.098 0.581_

0.024 0.473
0.063 0 .415

29.70 28.78 -M.4
L6.93 16.73 0 .2

3.956 3.731 8.4
2.957 2.703 49.8
1,.?96 L.077 46.L
2.362 2.329 3.4
L.ggz t.929 -46.9
1,.668 L.6ru -48.7
L.L77 0.900 -31.3
1.557 L.253 23.0
L.038 1.006 52.2
0.ggg 0.991 52.8

0,773 0.590 9.4
0 .725 0.6 95 40 .6

0.606 0.595 5.6
0.485 0.476 5.0
0,376 0.374 55.5
0.329 0.325 5.7
0.419 0.329 L2.6
0.24L 0.235 46.8

L72.0 171.8 0

9.42 9.42 0

4.672 4.565 0

3.502 3.007 0

1.58 5 1.576 0

1.736 1.709 0

r.87 7 L.492 90

1.373 1.371 0

L.286 L.239 0

1.32 0 1.303 0

1.03l, 0.808 90

0.605 0.602 0

0 .534 0.343 90

10.7 25.3
53.6 30.8

-38.2 4.2
8.4 -30.8

24.0 -29.9
52.4 23.5
8.3 24.3
L.5 L4.4
8.9 58.2

-20.6 -66.4
6.',ï -30.8

L0.4 -33.0
35.2 -65.4

-28.0 -46.L
5L.0 -27.r

-56.8 0 .2

-t6.4 - 15.6
52.3 -83.0

-73.9 35.?
0.7 5.2

53 90

56.6 90

-59.2 90

-74.6 90

53.3 0

-32.L 0
(a) o

55.2 0

62.t 90

-56.4 90
(b) 0

50.9 0

(c) o

(a) óz =-45.5

nt(ai{s, +Ft{ro)

Such a wave function gives rise to urially sym-
metric hyperfine interactions if only the atomic
orbitals centered on the relevent nuclear site are
considered. In that case the Fermi-contact in-
teraction Eq. (5) reduces to

&t=fus$ngrttnn?a?lp*,(o)l'. (B)

The dipole-dipole part of the interaction Eq. (6)

in diagonal form reduces to

00
-br o

o -bl
v/ith

bt =ts p"g rp rnlïl(t/r'),o

(b) Óz = -75.2 (c) ó, = 6L.7

\ryere transformed to diagonal form and reduced
to

./=I
i

(7)

)=(^=fi
ro o

Azo
oAs

+2b00
0 a-b+c 0

0 0 a-b-c
(11)

in which c gives the deviation from urial sym-
metry. The values ír, b, and c are shown in Table
II. From the 20 general class interactions 16 are
approximately anially symmetric around the À,
eigenvector. From the 13 mirror-plane class in-
teractions 10 tensors show this property. More-
over 21 of thes e 26 urially symmetric interactions
have their anial direction near one of the (110
crystal bond directions. These urial directions
are also given in Table II, denotedby a, b, c, and

d according to Fig. 1. The fraction of (111) urial-

(e)Ë(ï

(10)

For the analysis of the present data the tensors
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TABLE tr. Reduced hyperfine parameters (MHz), axial direction, and derived LCAO
parameters.

Tensor a Axis az P2 q2 $o)

IB

GI
G2
G3
G4
G5
G6
G7
G8
G9
GL0
G11
GL2
G13
GL4
G15
G 1_6

Gt7
G18
G19
G20

MT
M2
IUTS

M4
M5
M6
M7
M8
M9
MLO
MLL
Mt2
Mt3

3L.47
L9.94
4.L59
3.5L2
2.942
2.8L5
2.467
1.936
1.783
L.496
L,223
L.L?5
0.750
0.723
0.704
0.580
0.425
0.4L2
0.407
0.297

L95.2
11.40
5.344
4.4L6
2.005
1.840
L.792
1.70 l_

L.il5
1.51"8

1.01_9

0.70L
0.496

2,23
3.1?
0.386
0.732
1.51_1

0.470
0.512
0.275
0.745
0.091
0.201
0.180
0.068
0.013
0.103
0.0 99
0.0 50

0.09 5

0.033
0.059

23.3
1_.98

0.725
1.161
0.425
0.1L7
0.10 7
0.329
0.282
0.207
0 .100
0.097
0.0 58

0.46
0.05
0.063
0.077
0.355
0.017
0.027
0.00 7
0.139
0.L52
0.016
0.004
0.092
0.0 1_5

0.006
0.005
0,001
0.002
0.04 5
0.003

0 .1_

0.00
0.0il
0.248
0.005
0.0l_4
0.193
0.001
0.024
0.009
O.LLz
0.002
0.096

b /c
d

b/c

d
b/c
b/c
tb/c
no
b/c
b/c
no
no
d
a
b/c
d
no
b/c

d
d
a

d
Ld
no
d
d
a
no
d
no

0,256
0 .133
0.2 1"8

0.105
0.04 5
0.128
0.105
0.L47
0.055
0.287
0 .130
0.138
0.213
0.582
0.143
0.L25
0,t12
0.106
0.232
0. L10

0,170
0.L23
0 .153
0.08 5

0.103
0.277
0.290
O.LLz
0. L18

0.].52
0.200
0.150
0.L74

0.744
0.867
0.782
0.8 95
0.955
0.872
0.8 95
0.8 53

0.94 5

0.713
0.8 70

0.862
0.78 ?
0.418
0.8 57

0.875
0.828
0.894
0.768
0.890

0.830
0.877
0.847
0.9L5
0.897
0.723
0.710
0.888
0.882
0.848
0.800
0.8 50
0.826

2.97
3.61
0.46
0.81
l-.56
0.53
0 .57
0.32
0.78
0.13
0.23
0.2L
0.09
0.03
0.t2
0.11
0.06
0.09
0.04
0 "07

27.7L
2.23
0.8 5

L.25
0,47
0,16
0 .15
0.37
0.32
0.2,/L

0.L2
0.11
0.07

ly symmetric interactions is about the same as
for the positive divacancy as given in I. For the
constants of the atomic silicon \ryave function ap-
pearing in Eqs. (B) and (10) values given by Wat-
kins and Corbetts6 can be taken: lUr" (0) l' = 31. 5

x 1024 cm-3 and (t/r1r, = 16.1x Lff4 cm-3. Sub-
stituting these values and using e.2 + F2 = L one
derives from each hyperfine interaction the local-
ization (n') and the s and p character (a' and B2,
respectively) of the defect electron on the lattice
sites of the corresponding shell. These values
are also given in Table II, exhibiting a slightly
less LocaLtzed wave function than the positive
charge state.37 For an electron in an orbital point-
ing in any of the four (ttt) bond directions in the
silicon lattice, a s^pt hybridízed orbital might be
expected. Inspection of Table II shows that the
(111) urially symmetric tensors generally show
a deviation from e,' = 0.2 5. On the average only
L6.\Vo s character is found. For a proper set of

basis functions the values 4f should add up to
L00Vo. The too large value En! = 119V0 is probably
due to the nonorthogonality of the atomic orbitals
which are centered on different lattice sites and
to the nona:rial interactions for which the values
rfi, have little significance.

The origins of the deviations from urial sym-
metry and the strong p character of the \ryave func-
tion as it is reflected in the hyperfine interactions
require a further examination. Especially for the
dipole-dipole term as reduced to Eqs. (9) and (10)
corrections have to be included. Unpaired charge
densities on neighboring lattice sites and overlap
between atomic orbitals can contribute to con-
siderable deviations both from the urial direction
as from the urial character itself.3S The latter
can also be brought about by including 3d orbitals
in the LCAO treatment. It is not quite possible,
however, to elaborate such corrections for all
lattice sites, certainly not as a matching between
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tensors and definite shells of lattice sites is not
yet possible.

B. Results from extended Htickel theory calculations

For a theoretical calculation of wave functions
and energy levels of deep level defects in a coval-
ent solid as silicon semiempirical EHT calcula-
tions have been shown to be rather successful.26
The theory works best for systems where the dif-
ferences in electronegativity are not too great. As
intrinsic point defects in elemental covalent semi-
conductors are probably in this category, EHT
has been applied to these systems in a number of
cases.38'3e As the detailed information from
ENDOR experiments yields a severe test for a
theory tike this, it is important to compare be-
tween theory and experiment, both to describe the

experiment and to examine the reliability of the
theoretical method.

EHT uses molecular orbitals r/; which are linear
combinations of atomic orbitals Q i

6843

For the atomic orbitals generally Slater-type 3s

and 3p orbitals are chosen. A solution for the
secular equations

L W,o - €.ts1o)cu, = o

yields the wave-function coefficients cu, and the
energy eigenvalues €r. A solution is obtained using
the Wolfsberg -Helmholtz approximations

(13)

H,o =(Qilrcl Ou) = 4Ktu(l, +Iu)sio, i + h

and

Htt=-It

(14)

(15)

fr=1 cetQe (12 )

in which Sru =(QilQ), I, is the empirical ioníza-
tion energy of orbital j, and Kro is a parameter
between 1 and2. The parameter K,u will generally
be adjusted empirically, for instance, to repro-
duce the known silicon band structure in a calcula-
tion for the perfect lattice.

Defect calculations can be performed for a finite
cluster with a defect in its center or for an in-
finite lattice constituted by a periodic repetition
of clusters with such a shape that no empty sites

FIG. 6. Two main sym-
metry-lowe ring distortion
modes (al EGL and (b) EGz
of the divacancy with its
six nearest neighbors in
sideview and topvierv. The
arrows correspond to one
unit of distortion, which is
defined as an rms displace-
ment of the six atoms of 1 À.
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FIG. 7. (a) Isotropic part a , (b) axial part b of. the hy-
perfine interaction tensor for the shell of atoms d and
d' as function of the distortion parameters EGL and EGZ.
Calculation for a wave function of symmetry bu.

a^re left between. With this molecular unit cell
approach (MUCA) ttre disturbing effect of unpaired
surface states of an isolated cluster and the extra
charges required to satisfy these bonds can be re-
moved.

With MUCA, calculations for the divacancy in
a 64-atom cluster had been performed already
by Lee and McGill.z? With application of a Jatrn-
Teller distortion they find two defect levels in the
band gap, one of symmetry óu below one of sym-
metty ar. These are the right symmetries but in
reversed order as compared to those derived in
a simpler treatment by Watkins and Corbett. s

MUCA calculations have also been performed es-

0.5
EG1

'-0.2 02

FIG. 8. Same data as in
of atoms ó, c, b' , and c' .

(b)

Fig. 7 calculated for the shell

pecially to describe hyperfine interactions using
slightly different orbitals and EHT parameters.2B,2s
From these calculations it is also argued that in
the positive charge state of the divacancy the un-
paired electron occupies a level of symmetry ór.
For this level a systematical study of the effect
of different Jahn-Teller distortion modes has
been made in order to obtain a best fit with ex-
perimental results from I. It turned out that there
was a promising region of values for both main
distortion modes, for which satisfactory agreement
could be obtained between observed hyperfine in-
teractions and theoretical values for two shells of
nearest neighbors of the divacancy.ze n:l Fig. 6 the

EG2
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l

-02

(b)

FIG. 9. (a) Isotropic parta, (b) axi.al part á of the

hyperfine interaction tensor for the shell of atoms d and

d' ealculated for a tfi/ave function of symmetty ar.

two main distortion modes are represented. The
hyperfine parameters a and b were calculated as

a function of these two distortions. In that way
for Vi the largest mirror-plane interaction M1
could be ascribed to the shell of lattice sites d
and d' in Fig . L, as should also be expected from
simple considerations. For the nearest-neighbor
general class shelt (atom sites ó, c , b' , and c' in
Fig. 1) from theory a better agreement with ten-
sor G 1 than with G2 had been obtained. This was
in contradiction, however, with earlier conclusions
from motionally averaged EPR spectra.l'5 The

significance of the experimental assignment of
tJris shell to G2 rather than to G1 or G3, however,

ó845

íol

EG2

6

(b)

FIG. 10. Same data as in Fig. 9 calculated for the
shell of atoms á, c, b' , and c' .

is less than suggested in I, as would follow from
a similar uncertainty in the averaged hyperfine
interactions as presently found for V; (Sec. IVC).
In Figs. 7 and 8 the calculated results are given.
A simultaneous accurate fit of. Mt and G 1 or G2

of Vl could not be obtained. There is, however,
some agreement for distortion values of 0.05< EGL
< 0.1 and -0.05< EGZ < 0.03.

To obtain the negative charge state of the di-
vacaney the next higher energ:y level has to be

considered whose \ryave function has a large lo-
ealízation on the divacancy. The only one in the
band gap which deserves consideration turns out
to have au symmetry. For this level and \ryave
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function, ascribed to the negative charge state,
hyperfine parameters have also been calculated
for the nearest-neighbor mirror-plane class and
general class shells. In Figs. 9 and 10 values for
a and b for the two nearest-neighbor shells are
given as a function of the two main distortion
modes of Fig. 6. A comparison with the experi-
mental results of Table II shows large discrepan-
cies in most cases. It is evident that a simultan-
eous fit for both parameters and both shells of
V; is not even approximately possible.

From the simple considerations of Watkins and

Corbetts it followed that the unpaired electron
of Vl oceupied a level of symmetry a, and that
of V; a level of symmetry ón. This reversed
order as compared to the EHT results seemed

reasonable as the a, Ievel corresponds mainly to
an extended bondingtike orbital between both mir-
ror-plane class nearest neighbors, while the Ó,

level arose from such an antibondinglike orbital
whose energy is generally higher. A closer exam-
ination of the energy levels nea.r the bandgap which
result from the present EHT calculations reveals
some problems as already indicated earlier.2B'.2e

Not all levels in the bandgap show a high Localíza-
tion on the divacancy and not all localized levels
are in the bandgap. Likewise the filling of cal-
culated levels is not performed consistently in
order of increasing energy in all cases. More-
over the order of resulting levels also depends

on the magnitude of the distortion and on the
point of. k space for which calculations have been
performed. This all may be indications that the

detailed positions of energy levels relative to
each other, às resulting from EHT calculations,
are not very significant. Therefore it is equal-
ly possible that the energy levels have to be

filled in such an order that the levels of symmetry
as and bu have to be assigned to the charge states
of the divacancy in the way Watkins and Corbett
did. To explore this equally probable possibili$,
EHT results have to be compared with experimen-
tal values in that way. To facilitate such a com-
parison, values of the hyperfine parameters 4

and b are given in Table III for the four largest
interactions for both V! and V;.

If V; is identified with the ó, level, the theoreti-
cal values for the hyperfine parameters of the
shell of atoms d and d' a.re too low compared to
ML, as shown in Fig. 7 . For the parameter ó

better agreement can be obtained than fot a. For
the nearest-neighbor general class shell of atoms
b, c, b', andc' of Ví, rather good agreement
with G 1 can be obtained for the parameters a and

b. Ilr this comparison tensor G t has been chosen
as a result of the identification from motionally
averaged EPR spectra, as described in Sec. fV C.

E. G. SIEVERTS, S MULLER, AND C. A. J.AMMERTAAN IB

TABLE III. Hyperfine parameters a and Ó (MHz) for
fi and V2.

(EPR spectrum G6) (EPR sPectrum G7)

Tensorabab

wfr.

ML
G1
G2
G3

Considering only EHT results an identification with
GZ should be likewise possible. If a factor 1.5 dis-
crepancy for the parameter a of. ML is accepted,
promising distortions for a simultaneous fit of
the nearest-neighbor shells of V; are 0.05 < EGL
< 0.1 and -0.05< EGz < 0.03.

An identification of Vl with the a, level also gives
too low parameters for the shell of atoms d and
d' as compared to ML. For this shell and also
for the nearest-neighbor general class shell no
simultaneous agreement can be obtained. It is
not quite possible to indicate a region of best dis-
tortions in Figs. 9 and 10, as the discrepancies
for the four observed values of. MI and GL, G2 ,

or G3 of Izf witl hardly be below a factor of. 2 sim-
ultaneously. This happens only for distortions
in the lower left quadrant of the figures

The result of this comparison and the original com -
parison mentioned earlier is that the b, level des -
cribes V! slightly better than V;. ThQ ar level gives a
poor desc ription for both charge states , for V I still
worse than for V*r. Therefore no decisive conclusions
as to the defect levels can be drawn.
From the above it is clear that EHT results can-

not yet give a reliable description of a defect vrave
function in such detail that it can meaningfully
be compared with ENDOR results. A possible
improvement may be obtained by the introduction
of some self-consistency by an iterative calcula-
tion which takes into account charge redistribu-
tions. Preliminary results of Weigel and Ammer-
laan3o on Iz| seem more promising than the EHT
results reported in this section.

C. Motional effects

From the previous subsection it follows that
theory for defects has not yet reached such a level
that for the present results an identification of
more than one shell has become possible. Besides
the division in general class shells and mirror-
plane class shells experimental results can give
one more piece of information.

As already discussed in I at elevated tempera-
fures motionally averaged EPR spectra can be
observed as a result of a fast jump rate of the di-

1485

22.637

Lg.23'.I

L0.23'./,

296 L95.2 29.3
2.03'l gl.s z.z
0,63? 1g.g 8.2
1.63? 4 .L6 o .B g
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TABLE fV. Motionally averaged
Á. Experimental values compared

ffi47

h5rperfine interactions
to theoretical ones.

vacancy between Jahn-Teller configurations with
the same vacancy-vacancy a:ris. For V; such ef-
fects are present above a"bout ?0 K. In the new

higher Sm(n*) symmetry the two nearest-neigh-
bor shells of the atoms d and d' and b, c ' b' , and

c' in Fig. 1 merge together to one nerv six-atom
shell for which a hyperfine interaction can be ob-
served which is an avera.ge of the original hyper-
fine interactions. The pattern of this averaged
interaction shows monoclinic I symmetry.

Observed hyperfine interactions from an EPR

experiment at liquid-nitrogen temperature for a

magnetic field in the [100], Itl1], and [011] ."y-
statlographic directions are given in Table IV.
The diÍferences in the hyperfine splittings are too

small in some cases to be resolvable in EPR.
Therefore the number of lines observed experi-
mentally is smaller than corresponding to mono-
clinic I symmetry. Values which were calculated
taking into account the anisotropic form of the g
tensor are also given. Due to the ! , z ambiguity
in the hyperfine tensor assignments for general
class shells, as mentioned in Sec. IIIC, two cases

have to be considered. For the aim of identifica-
tion the nearest-neighbor mirror-plane class shell
is associated with tensor ML, while for the rêê^r-
est-neighbor general class shell either G 1 or G2

has been taken as candidate. From a eomparison
it is clear that G1 has to be identified with the

nea.rest-neighbor general class shell in accordance
with the conclusion of Watkins and Corbett. s The

observed hyperfine a:ris of G1, moreover, has

about the requisite b or c direction. From the

angle 7, a correct bent bond angle of 109o follows,
but the planes of these bent bonds are 10" out of

the (011) plane. The atomic orbital which follows
from the G1 tensor shows a surprisingly good

spt hybridization. This good agreement with the

LCAO picture is in sharp contrast to V;, where
on these four atoms not the right (111) a:cial sym-
metry is found, whether tensot GL, G2, or G3

has to be assigned to that shell.

V. CONCLUSIONS

For the different charge states of the divacancy
much information is known already, especially

*Present address: Instthrte for the Sfudy of Defects in
Solids, State University of New York at Albany, Albany,
N. Y. L2222.
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neighbor shells, earlier made from EPR, could
be confirmed, For the two tensors ML and GL,
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